gbf_core/bytecode_loader.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
#![deny(missing_docs)]
use crate::{
graal_io::{GraalIoError, GraalReader},
instruction::Instruction,
opcode::{Opcode, OpcodeError},
operand::{Operand, OperandError},
utils::Gs2BytecodeAddress,
};
use std::{
collections::{BTreeSet, HashMap},
io::Read,
};
use log::warn;
use petgraph::graph::{DiGraph, NodeIndex};
use serde::{Deserialize, Serialize};
use thiserror::Error;
/// Error type for bytecode operations.
#[derive(Error, Debug)]
pub enum BytecodeLoaderError {
/// Error for when an invalid section type is encountered.
#[error("Invalid section type: {0}")]
InvalidSectionType(u32),
/// Error for when an invalid section length is encountered.
#[error("Invalid section length for {0}: {1}")]
InvalidSectionLength(SectionType, u32),
/// Error when string index is out of bounds.
#[error("String index {0} is out of bounds. Length: {1}")]
StringIndexOutOfBounds(usize, usize),
/// Error for when there is no previous instruction when setting an operand.
#[error("No previous instruction to set operand")]
NoPreviousInstruction,
/// Unreachable block error.
#[error("Block at address {0} is unreachable")]
UnreachableBlock(Gs2BytecodeAddress),
/// Error for when an I/O error occurs.
#[error("GraalIo error: {0}")]
GraalIo(#[from] GraalIoError),
/// Error for when an invalid opcode is encountered.
#[error("Invalid opcode: {0}")]
OpcodeError(#[from] OpcodeError),
/// Error for when an invalid operand is encountered.
#[error("Invalid operand: {0}")]
InvalidOperand(#[from] OperandError),
}
impl std::fmt::Display for SectionType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SectionType::Gs1Flags => write!(f, "Gs1Flags"),
SectionType::Functions => write!(f, "Functions"),
SectionType::Strings => write!(f, "Strings"),
SectionType::Instructions => write!(f, "Instructions"),
}
}
}
/// Represents a section type in a module.
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq, Clone, Copy)]
#[repr(u32)]
pub enum SectionType {
/// The section contains flags for the module.
Gs1Flags = 1,
/// The section contains the module's functions.
Functions = 2,
/// The section contains the module's strings.
Strings = 3,
/// The section contains the module's instructions.
Instructions = 4,
}
/// A builder for a BytecodeLoader.
pub struct BytecodeLoaderBuilder<R> {
reader: R,
}
impl<R: std::io::Read> BytecodeLoaderBuilder<R> {
/// Creates a new BytecodeLoaderBuilder.
///
/// # Arguments
/// - `reader`: The reader to read the bytecode from.
///
/// # Returns
/// - A new `BytecodeLoaderBuilder` instance.
///
/// # Example
/// ```
/// use gbf_core::bytecode_loader::BytecodeLoaderBuilder;
///
/// let reader = std::io::Cursor::new(vec![0x00, 0x00, 0x00, 0x00]);
/// let builder = BytecodeLoaderBuilder::new(reader);
/// ```
pub fn new(reader: R) -> Self {
Self { reader }
}
/// Builds a `BytecodeLoader` from the builder.
///
/// # Returns
/// - A `Result` containing the `BytecodeLoader` if successful.
///
/// # Errors
/// - `BytecodeLoaderError::InvalidSectionType` if an invalid section type is encountered.
/// - `BytecodeLoaderError::InvalidSectionLength` if an invalid section length is encountered.
/// - `BytecodeLoaderError::StringIndexOutOfBounds` if a string index is out of bounds.
/// - `BytecodeLoaderError::NoPreviousInstruction` if there is no previous instruction when setting an operand.
/// - `BytecodeLoaderError::GraalIo` if an I/O error occurs.
/// - `BytecodeLoaderError::OpcodeError` if an invalid opcode is encountered.
pub fn build(self) -> Result<BytecodeLoader<R>, BytecodeLoaderError> {
let mut loader = BytecodeLoader {
block_breaks: BTreeSet::new(),
reader: GraalReader::new(self.reader),
function_map: HashMap::new(),
strings: Vec::new(),
instructions: Vec::new(),
raw_block_graph: DiGraph::new(),
raw_block_address_to_node: HashMap::new(),
block_address_to_function: HashMap::new(),
};
loader.load()?; // Load data during construction
Ok(loader)
}
}
/// A structure for loading bytecode from a reader.
pub struct BytecodeLoader<R: Read> {
reader: GraalReader<R>,
strings: Vec<String>,
/// A map of function names to their addresses.
pub function_map: HashMap<Option<String>, Gs2BytecodeAddress>,
/// The instructions in the module.
pub instructions: Vec<Instruction>,
// A HashSet of where block breaks occur.
block_breaks: BTreeSet<Gs2BytecodeAddress>,
/// The relationship between each block start address and the next block start address.
raw_block_graph: DiGraph<Gs2BytecodeAddress, ()>,
/// A map of block start addresses to their corresponding node in the graph.
raw_block_address_to_node: HashMap<Gs2BytecodeAddress, NodeIndex>,
/// A map of block start addresses to their corresponding function name.
pub block_address_to_function: HashMap<Gs2BytecodeAddress, Option<String>>,
}
impl<R: Read> BytecodeLoader<R> {
/// Asserts that the section length is correct.
///
/// # Arguments
/// - `section_type`: The type of the section.
/// - `expected_length`: The expected length of the section.
/// - `got_length`: The actual length of the section.
///
/// # Returns
/// - A `Result` indicating success or failure.
///
/// # Errors
/// - `BytecodeLoaderError::InvalidSectionLength` if the section length is incorrect.
fn expect_section_length(
section_type: SectionType,
expected_length: u32,
got_length: u32,
) -> Result<(), BytecodeLoaderError> {
if expected_length != got_length {
return Err(BytecodeLoaderError::InvalidSectionLength(
section_type,
got_length,
));
}
Ok(())
}
/// Reads the flags section from the reader.
///
/// We don't actually need to do anything with the flags section, so we just read it and ignore it.
fn read_gs1_flags(&mut self) -> Result<(), BytecodeLoaderError> {
let section_length = self.reader.read_u32().map_err(BytecodeLoaderError::from)?;
let _flags = self.reader.read_u32().map_err(BytecodeLoaderError::from)?;
// assert that the section length is correct
Self::expect_section_length(SectionType::Gs1Flags, 4, section_length)?;
Ok(())
}
/// Insert a block start into the graph
///
/// # Arguments
/// - `address`: The address of the block.
fn insert_block_start(&mut self, address: Gs2BytecodeAddress) {
self.block_breaks.insert(address);
}
/// Reads the functions section from the reader. This section contains the names of the functions
/// in the module.
///
/// # Returns
/// - A `Result` indicating success or failure.
///
/// # Errors
/// - `BytecodeLoaderError::InvalidSectionLength` if the section length is incorrect.
/// - `BytecodeLoaderError::GraalIo` if an I/O error occurs.
fn read_functions(&mut self) -> Result<(), BytecodeLoaderError> {
let section_length = self.reader.read_u32().map_err(BytecodeLoaderError::from)?;
// Insert the entry point function
self.function_map.insert(None, 0);
// For each function, use self.reader.read_u32() to get the location of the function,
// and then use self.reader.read_string() to get the name of the function. We should
// only read up to section_length bytes.
let mut bytes_read = 0;
while bytes_read < section_length {
let function_location =
self.reader.read_u32().map_err(BytecodeLoaderError::from)? as Gs2BytecodeAddress;
let function_name = self
.reader
.read_string()
.map_err(BytecodeLoaderError::from)?;
self.function_map
.insert(Some(function_name.clone()), function_location);
bytes_read += 4 + function_name.len() as u32;
bytes_read += 1; // Null terminator
self.insert_block_start(function_location);
}
// assert that the section length is correct
Self::expect_section_length(SectionType::Functions, section_length, bytes_read)?;
Ok(())
}
/// Reads the strings section from the reader. This section contains the strings used in the module.
///
/// # Returns
/// - A `Result` indicating success or failure.
///
/// # Errors
/// - `BytecodeLoaderError::GraalIo` if an I/O error occurs.
/// - `BytecodeLoaderError::InvalidSectionLength` if the section length is incorrect.
fn read_strings(&mut self) -> Result<(), BytecodeLoaderError> {
let section_length = self.reader.read_u32().map_err(BytecodeLoaderError::from)?;
// For each string, use self.reader.read_string() to get the string. We should only read up to section_length bytes.
let mut bytes_read = 0;
while bytes_read < section_length {
let string = self
.reader
.read_string()
.map_err(BytecodeLoaderError::from)?;
self.strings.push(string.clone());
bytes_read += string.len() as u32;
bytes_read += 1; // Null terminator
}
// assert that the section length is correct
Self::expect_section_length(SectionType::Strings, section_length, bytes_read)?;
Ok(())
}
/// Read one opcode from the reader and return it.
fn read_opcode(&mut self) -> Result<Opcode, BytecodeLoaderError> {
let opcode_byte = self.reader.read_u8().map_err(BytecodeLoaderError::from)?;
let opcode = Opcode::from_byte(opcode_byte)?;
Ok(opcode)
}
/// Read one operand from the reader and return it along with the number of bytes read.
fn read_operand(
&mut self,
opcode: Opcode,
) -> Result<Option<(Operand, usize)>, BytecodeLoaderError> {
match opcode {
Opcode::ImmStringByte => {
let string_index = self.reader.read_u8().map_err(BytecodeLoaderError::from)?;
let string = self.strings.get(string_index as usize).ok_or(
BytecodeLoaderError::StringIndexOutOfBounds(
string_index as usize,
self.strings.len(),
),
)?;
Ok(Some((Operand::new_string(string), 1)))
}
Opcode::ImmStringShort => {
let string_index = self.reader.read_u16().map_err(BytecodeLoaderError::from)?;
let string = self.strings.get(string_index as usize).ok_or(
BytecodeLoaderError::StringIndexOutOfBounds(
string_index as usize,
self.strings.len(),
),
)?;
Ok(Some((Operand::new_string(string), 2)))
}
Opcode::ImmStringInt => {
let string_index = self.reader.read_u32().map_err(BytecodeLoaderError::from)?;
let string = self.strings.get(string_index as usize).ok_or(
BytecodeLoaderError::StringIndexOutOfBounds(
string_index as usize,
self.strings.len(),
),
)?;
Ok(Some((Operand::new_string(string), 4)))
}
Opcode::ImmByte => {
let value = self.reader.read_u8().map_err(BytecodeLoaderError::from)?;
Ok(Some((Operand::new_number(value as i32), 1)))
}
Opcode::ImmShort => {
let value = self.reader.read_u16().map_err(BytecodeLoaderError::from)?;
Ok(Some((Operand::new_number(value as i32), 2)))
}
Opcode::ImmInt => {
let value = self.reader.read_u32().map_err(BytecodeLoaderError::from)?;
Ok(Some((Operand::new_number(value as i32), 4)))
}
Opcode::ImmFloat => {
let value = self
.reader
.read_string()
.map_err(BytecodeLoaderError::from)?;
Ok(Some((Operand::new_float(value.clone()), value.len() + 1)))
}
_ => Ok(None),
}
}
/// Reads the instructions section from the reader. This section contains the bytecode instructions.
fn read_instructions(&mut self) -> Result<(), BytecodeLoaderError> {
// Add the first block start address
self.insert_block_start(0);
let section_length = self.reader.read_u32().map_err(BytecodeLoaderError::from)?;
let mut bytes_read = 0;
while bytes_read < section_length {
let opcode = self.read_opcode()?;
bytes_read += 1;
let operand = self.read_operand(opcode)?;
if let Some(operand) = operand {
// Separate scope for mutable borrow of instructions
{
let last_instruction = self
.instructions
.last_mut()
.ok_or(BytecodeLoaderError::NoPreviousInstruction)?;
last_instruction.set_operand(operand.0.clone());
}
bytes_read += operand.1 as u32;
debug_assert!(self.instructions.last().is_some());
// We can unwrap here because we know that the last instruction exists in the scope above
if self.instructions.last().unwrap().opcode.has_jump_target() {
self.insert_block_start(operand.0.get_number_value()? as Gs2BytecodeAddress);
}
} else {
// Create a new instruction
let address = self.instructions.len();
self.instructions.push(Instruction::new(opcode, address));
if opcode.is_block_end() {
let current_address = address as Gs2BytecodeAddress;
self.insert_block_start(current_address + 1);
}
}
}
// Verify the section length
Self::expect_section_length(SectionType::Instructions, section_length, bytes_read)?;
// Handle the case of empty instructions
if self.instructions.is_empty() {
warn!("No instructions were loaded.");
self.block_breaks.clear();
}
// Validate all addresses
let instruction_count = self.instructions.len() as Gs2BytecodeAddress;
for address in self.block_breaks.iter() {
// It is legal to jump to the "end" of the instructions, but not past it.
if *address > instruction_count {
return Err(BytecodeLoaderError::InvalidOperand(
OperandError::InvalidJumpTarget(*address),
));
}
}
Ok(())
}
/// Loads the bytecode from the reader into the structure.
///
/// # Returns
/// - A `Result` indicating success or failure.
///
/// # Errors
/// - `BytecodeLoaderError::InvalidSectionType` if an invalid section type is encountered.
/// - `BytecodeLoaderError::InvalidSectionLength` if an invalid section length is encountered.
/// - `BytecodeLoaderError::StringIndexOutOfBounds` if a string index is out of bounds.
/// - `BytecodeLoaderError::NoPreviousInstruction` if there is no previous instruction when setting an operand.
/// - `BytecodeLoaderError::GraalIo` if an I/O error occurs.
/// - `BytecodeLoaderError::OpcodeError` if an invalid opcode is encountered.
/// - `BytecodeLoaderError::InvalidOperand` if an invalid operand is encountered.
fn load(&mut self) -> Result<(), BytecodeLoaderError> {
// TODO: I know there will only be 4 sections, but I'd like to make this more dynamic.
for _ in 0..4 {
let section_type = self.read_section_type()?;
match section_type {
SectionType::Gs1Flags => {
self.read_gs1_flags()?;
}
SectionType::Functions => {
self.read_functions()?;
}
SectionType::Strings => {
self.read_strings()?;
}
SectionType::Instructions => {
self.read_instructions()?;
}
}
}
// After reading in all of the block breaks, we can now create the graph.
for block_break in self.block_breaks.iter() {
let node = self.raw_block_graph.add_node(*block_break);
self.raw_block_address_to_node.insert(*block_break, node);
}
// Iterate through each instruction to figure out the edges
for instruction in self.instructions.iter() {
let current_instruction_address = instruction.address as Gs2BytecodeAddress;
let current_block_address = self.find_block_start_address(current_instruction_address);
// if the instruction is the last instruction in the block
let is_block_end = self
.block_breaks
.contains(&(current_instruction_address + 1));
// If the current instruction is a jump, then we need to add an edge to the target block start
if instruction.opcode.has_jump_target() {
let source_node = self
.raw_block_address_to_node
.get(¤t_block_address)
// We can unwrap here because we know that the current block address exists
// If it doesn't, then there is a bug that needs to be fixed in the internal
// logic of the loader.
.unwrap();
// Unwrap here because we know that the operand exists due to a previous check in
// `read_instructions`
let target_address =
instruction.operand.as_ref().unwrap().get_number_value()? as Gs2BytecodeAddress;
// Also unwrap here because we know that the target address exists in the block breaks
let target_node = self.raw_block_address_to_node.get(&target_address).unwrap();
self.raw_block_graph
.add_edge(*source_node, *target_node, ());
}
// If the current opcode has a fallthrough, then we need to add an edge to the next block start
if is_block_end && instruction.opcode.connects_to_next_block() {
let source_node = self
.raw_block_address_to_node
.get(¤t_block_address)
// We can unwrap here because we know that the current block address exists
// If it doesn't, then there is a bug that needs to be fixed in the internal
// logic of the loader.
.unwrap();
// Find the next block start address
let next_block_address = current_instruction_address + 1;
// Also unwrap here because we know that the target address exists in the block breaks
let target_node = self
.raw_block_address_to_node
.get(&next_block_address)
.unwrap();
self.raw_block_graph
.add_edge(*source_node, *target_node, ());
}
}
// Iterate through each function
for (function_name, function_address) in self.function_map.iter() {
debug_assert_eq!(
self.raw_block_graph.node_count(),
self.raw_block_address_to_node.len(),
"Graph node count and block address map size do not match!"
);
for (&block_address, &node) in &self.raw_block_address_to_node {
debug_assert!(
self.raw_block_graph.node_indices().any(|n| n == node),
"Node {:?} for block address {} is missing in the graph.",
node,
block_address
);
}
if let Some(function_node) = self.raw_block_address_to_node.get(function_address) {
let mut dfs = petgraph::visit::Dfs::new(&self.raw_block_graph, *function_node);
while let Some(node) = dfs.next(&self.raw_block_graph) {
// Map node back to block address.
if let Some(block_address) =
self.raw_block_address_to_node.iter().find_map(|(k, v)| {
if *v == node {
Some(*k)
} else {
None
}
})
{
self.block_address_to_function
.insert(block_address, function_name.clone());
} else {
warn!("Node {:?} has no matching block address.", node);
}
}
} else {
warn!(
"Function '{:?}' at address {} has no corresponding node in raw_block_address_to_node.",
function_name, function_address
);
}
}
Ok(())
}
/// Get the function name for a given address.
///
/// # Arguments
/// - `address`: The address to get the function name for.
///
/// # Returns
/// - The function name, if it exists.
///
/// # Errors
/// - `BytecodeLoaderError::UnreachableBlock` if the block is unreachable, and therefore,
/// the function name cannot be determined.
pub fn get_function_name_for_address(
&self,
address: Gs2BytecodeAddress,
) -> Result<Option<String>, BytecodeLoaderError> {
let block_start = self.find_block_start_address(address);
Ok(self
.block_address_to_function
.get(&block_start)
// return error if the block is unreachable
.ok_or(BytecodeLoaderError::UnreachableBlock(block_start))?
.clone())
}
/// Checks if an instruction is reachable.
///
/// # Arguments
/// - `address`: The address to check.
///
/// # Returns
/// - `true` if the instruction is reachable, `false` otherwise.
pub fn is_instruction_reachable(&self, address: Gs2BytecodeAddress) -> bool {
let blk = self.find_block_start_address(address);
self.block_address_to_function.contains_key(&blk)
}
/// Helper function to figure out what block the address is in. This basically looks
/// at the argument, and finds the closest block start address that is less than or equal
///
/// # Arguments
/// - `address`: The address to find the block for.
///
/// # Returns
/// - The block start address.
pub fn find_block_start_address(&self, address: Gs2BytecodeAddress) -> Gs2BytecodeAddress {
let mut block_start = 0;
for block_break in self.block_breaks.iter() {
if *block_break > address {
break;
}
block_start = *block_break;
}
block_start
}
/// Reads a section type from the reader.
fn read_section_type(&mut self) -> Result<SectionType, BytecodeLoaderError> {
let section_type = self.reader.read_u32().map_err(BytecodeLoaderError::from)?;
match section_type {
1 => Ok(SectionType::Gs1Flags),
2 => Ok(SectionType::Functions),
3 => Ok(SectionType::Strings),
4 => Ok(SectionType::Instructions),
_ => Err(BytecodeLoaderError::InvalidSectionType(section_type)),
}
}
}
#[cfg(test)]
mod tests {
use crate::{bytecode_loader::BytecodeLoaderBuilder, utils::Gs2BytecodeAddress};
#[test]
fn test_load() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x04, // Length: 4
0x00, 0x00, 0x00, 0x00, // Flags: 0
0x00, 0x00, 0x00, 0x02, // Section type: Functions
0x00, 0x00, 0x00, 0x09, // Length: 9
0x00, 0x00, 0x00, 0x00, // Function location: 0
0x6d, 0x61, 0x69, 0x6e, // Function name: "main"
0x00, // Null terminator
0x00, 0x00, 0x00, 0x03, // Section type: Strings
0x00, 0x00, 0x00, 0x04, // Length: 4
0x61, 0x62, 0x63, 0x00, // String: "abc"
0x00, 0x00, 0x00, 0x04, // Section type: Instructions
0x00, 0x00, 0x00, 0x0c, // Length: 12
0x01, // Opcode: Jmp
0xF3, // Opcode: ImmByte
0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF4, // Opcode: ImmShort
0x00, 0x01, // Operand: 1
0x15, // Opcode: PushString
0xF0, // Opcode: ImmStringByte
0x00, // Operand: 0
0x1b, // Opcode: PushPi
0x07, // Opcode: Ret
]);
let loader = BytecodeLoaderBuilder::new(reader).build().unwrap();
assert_eq!(loader.function_map.len(), 2);
assert_eq!(loader.function_map.get(&Some("main".to_string())), Some(&0));
assert_eq!(loader.strings.len(), 1);
assert_eq!(loader.strings.first(), Some(&"abc".to_string()));
assert_eq!(loader.instructions.len(), 5);
assert_eq!(loader.instructions[0].opcode, crate::opcode::Opcode::Jmp);
assert_eq!(
loader.instructions[1].opcode,
crate::opcode::Opcode::PushNumber
);
assert_eq!(
loader.instructions[1].operand,
Some(crate::operand::Operand::new_number(1))
);
assert_eq!(
loader.instructions[2].opcode,
crate::opcode::Opcode::PushString
);
assert_eq!(
loader.instructions[2].operand,
Some(crate::operand::Operand::new_string("abc"))
);
assert_eq!(loader.instructions[3].opcode, crate::opcode::Opcode::PushPi);
assert_eq!(loader.instructions[4].opcode, crate::opcode::Opcode::Ret);
}
#[test]
fn test_complex_load() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x04, // Length: 4
0x00, 0x00, 0x00, 0x00, // Flags: 0
0x00, 0x00, 0x00, 0x02, // Section type: Functions
0x00, 0x00, 0x00, 0x09, // Length: 9
0x00, 0x00, 0x00, 0x01, // Function location: 1
0x6d, 0x61, 0x69, 0x6e, // Function name: "main"
0x00, // Null terminator
0x00, 0x00, 0x00, 0x03, // Section type: Strings
0x00, 0x00, 0x00, 0x04, // Length: 4
0x61, 0x62, 0x63, 0x00, // String: "abc"
0x00, 0x00, 0x00, 0x04, // Section type: Instructions
0x00, 0x00, 0x00, 0x47, // Length: 71
// Instructions
0x01, 0xF3, 0x19, // Jmp 0x19
0x14, 0xF3, 0x00, // PushNumber 0
0x01, 0xF3, 0x0c, // Jmp 0x0c
0x14, 0xF3, 0x00, // PushNumber 0
0x01, 0xF3, 0x17, // Jmp 0x17
0x14, 0xF3, 0x00, // PushNumber 0
0x01, 0xF3, 0x17, // Jmp 0x17
0x14, 0xF3, 0x00, // PushNumber 0
0x01, 0xF3, 0x17, // Jmp 0x17
0x14, 0xF3, 0x00, // PushNumber 0 (unreachable)
0x01, 0xF3, 0x17, // Jmp 0x17
0x01, 0xF3, 0x17, // Jmp 0x17
0x14, 0xF3, 0x00, // PushNumber 0
0x02, 0xF3, 0x03, // Jeq 0x03
0x14, 0xF3, 0x00, // PushNumber 0
0x02, 0xF3, 0x03, // Jeq 0x03
0x14, 0xF3, 0x00, // PushNumber 0
0x02, 0xF3, 0x03, // Jeq 0x03
0x14, 0xF3, 0x00, // PushNumber 0
0x02, 0xF3, 0x05, // Jeq 0x05
0x14, 0xF3, 0x00, // PushNumber 0
0x02, 0xF3, 0x07, // Jeq 0x07
0x01, 0xF3, 0x0b, // Jmp 0x0b
0x20, // Pop
0x07, // Ret
]);
let loader = BytecodeLoaderBuilder::new(reader).build().unwrap();
assert_eq!(loader.function_map.len(), 2);
// get all of the block start addresses
// There is a block that is unreachable. It will still appear in the block starts.
let block_starts: Vec<Gs2BytecodeAddress> = loader.block_breaks.iter().copied().collect();
// Ensure that the block at address 0 connects to the block at address 0x19
let block_0 = loader.find_block_start_address(0);
let block_0x19 = loader.find_block_start_address(0x19);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0],
loader.raw_block_address_to_node[&block_0x19]
));
// Ensure that the block at address 1 connects to the block at address 0x0c
let block_1 = loader.find_block_start_address(1);
let block_0x0c = loader.find_block_start_address(0x0c);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_1],
loader.raw_block_address_to_node[&block_0x0c]
));
// Ensure that the block at address 0x03 connects to the block at address 0x17
let block_0x03 = loader.find_block_start_address(0x03);
let block_0x17 = loader.find_block_start_address(0x17);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x03],
loader.raw_block_address_to_node[&block_0x17]
));
// 0x05 -> 0x17
let block_0x05 = loader.find_block_start_address(0x05);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x05],
loader.raw_block_address_to_node[&block_0x17]
));
// 0x07 -> 0x17
let block_0x07 = loader.find_block_start_address(0x07);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x07],
loader.raw_block_address_to_node[&block_0x17]
));
// 0x0b -> 0x17
let block_0x0b = loader.find_block_start_address(0x0b);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x0b],
loader.raw_block_address_to_node[&block_0x17]
));
// 0x0c > 0x3
let block_0x0c = loader.find_block_start_address(0x0c);
let block_0x03 = loader.find_block_start_address(0x03);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x0c],
loader.raw_block_address_to_node[&block_0x03]
));
// 0x0c -> 0x0e
let block_0x0e = loader.find_block_start_address(0x0e);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x0c],
loader.raw_block_address_to_node[&block_0x0e]
));
// 0x0e -> 0x3
let block_0x0e = loader.find_block_start_address(0x0e);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x0e],
loader.raw_block_address_to_node[&block_0x03]
));
// 0x0e -> 0x10
let block_0x10 = loader.find_block_start_address(0x10);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x0e],
loader.raw_block_address_to_node[&block_0x10]
));
// 0x10 -> 0x3
let block_0x10 = loader.find_block_start_address(0x10);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x10],
loader.raw_block_address_to_node[&block_0x03]
));
// 0x10 -> 0x12
let block_0x12 = loader.find_block_start_address(0x12);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x10],
loader.raw_block_address_to_node[&block_0x12]
));
// 0x12 -> 0x5
let block_0x12 = loader.find_block_start_address(0x12);
let block_0x05 = loader.find_block_start_address(0x05);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x12],
loader.raw_block_address_to_node[&block_0x05]
));
// 0x12 -> 0x14
let block_0x14 = loader.find_block_start_address(0x14);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x12],
loader.raw_block_address_to_node[&block_0x14]
));
// 0x14 -> 0x7
let block_0x14 = loader.find_block_start_address(0x14);
let block_0x07 = loader.find_block_start_address(0x07);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x14],
loader.raw_block_address_to_node[&block_0x07]
));
// 0x14 -> 0x16
let block_0x16 = loader.find_block_start_address(0x16);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x14],
loader.raw_block_address_to_node[&block_0x16]
));
// 0x16 -> 0xb
let block_0x16 = loader.find_block_start_address(0x16);
let block_0x0b = loader.find_block_start_address(0x0b);
assert!(loader.raw_block_graph.contains_edge(
loader.raw_block_address_to_node[&block_0x16],
loader.raw_block_address_to_node[&block_0x0b]
));
// Compare every block start address to the expected values
let expected_block_starts = vec![
0x0, 0x1, 0x3, 0x5, 0x7, 0x9, 0xb, 0xc, 0xe, 0x10, 0x12, 0x14, 0x16, 0x17, 0x19,
];
assert_eq!(block_starts, expected_block_starts);
// The block at address 0x09 is unreachable, so it should not have any incoming edges
let block_0x09 = loader.find_block_start_address(0x09);
assert_eq!(
loader
.raw_block_graph
.neighbors_directed(
loader.raw_block_address_to_node[&block_0x09],
petgraph::Direction::Incoming
)
.count(),
0
);
assert_eq!(block_starts.len(), 15);
// Ensure that the function map is correct
assert_eq!(loader.function_map.len(), 2);
// For each address, ensure that the function name is correct
for address in expected_block_starts.iter() {
match address {
// Start of the module
0 => assert_eq!(loader.get_function_name_for_address(0).unwrap(), None),
// Unreachable node
0x09 => assert!(loader.get_function_name_for_address(9).is_err()),
// End of the module
0x19 => assert_eq!(loader.get_function_name_for_address(0x19).unwrap(), None),
_ => assert_eq!(
loader.get_function_name_for_address(*address).unwrap(),
Some("main".to_string())
),
}
}
}
#[test]
fn test_load_invalid_section_type() {
let reader = std::io::Cursor::new(vec![0x00, 0x00, 0x00, 0x05]);
let result = BytecodeLoaderBuilder::new(reader).build();
assert!(result.is_err());
}
#[test]
fn test_load_invalid_section_length() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x05, // Length: 5
0x00, 0x00, 0x00, 0x00, // Flags: 0
]);
let result = BytecodeLoaderBuilder::new(reader).build();
assert!(result.is_err());
}
#[test]
fn test_fmt_section_type() {
assert_eq!(
format!("{}", super::SectionType::Gs1Flags),
"Gs1Flags".to_string()
);
assert_eq!(
format!("{}", super::SectionType::Functions),
"Functions".to_string()
);
assert_eq!(
format!("{}", super::SectionType::Strings),
"Strings".to_string()
);
assert_eq!(
format!("{}", super::SectionType::Instructions),
"Instructions".to_string()
);
}
#[test]
fn test_load_string_index_out_of_bounds() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x04, // Length: 4
0x00, 0x00, 0x00, 0x00, // Flags: 0
0x00, 0x00, 0x00, 0x02, // Section type: Functions
0x00, 0x00, 0x00, 0x09, // Length: 9
0x00, 0x00, 0x00, 0x00, // Function location: 0
0x6d, 0x61, 0x69, 0x6e, // Function name: "main"
0x00, // Null terminator
0x00, 0x00, 0x00, 0x03, // Section type: Strings
0x00, 0x00, 0x00, 0x04, // Length: 4
0x61, 0x62, 0x63, 0x00, // String: "abc"
0x00, 0x00, 0x00, 0x04, // Section type: Instructions
0x00, 0x00, 0x00, 0x0c, // Length: 12
0x01, // Opcode: Jmp
0xF3, // Opcode: ImmByte
0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF4, // Opcode: ImmShort
0x00, 0x01, // Operand: 1
0x15, // Opcode: PushString
0xF0, // Opcode: ImmStringByte
0x01, // Operand: 1 (out of bounds)
0x1b, // Opcode: PushPi
0x07, // Opcode: Ret
]);
let result = BytecodeLoaderBuilder::new(reader).build();
assert!(result.is_err());
}
#[test]
fn test_invalid_instruction() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x04, // Length: 4
0x00, 0x00, 0x00, 0x00, // Flags: 0
0x00, 0x00, 0x00, 0x02, // Section type: Functions
0x00, 0x00, 0x00, 0x09, // Length: 9
0x00, 0x00, 0x00, 0x00, // Function location: 0
0x6d, 0x61, 0x69, 0x6e, // Function name: "main"
0x00, // Null terminator
0x00, 0x00, 0x00, 0x03, // Section type: Strings
0x00, 0x00, 0x00, 0x04, // Length: 4
0x61, 0x62, 0x63, 0x00, // String: "abc"
0x00, 0x00, 0x00, 0x04, // Section type: Instructions
0x00, 0x00, 0x00, 0x02, // Length: 2
0xF3, // Opcode: ImmByte
0x01, // Operand: 1
]);
let result = BytecodeLoaderBuilder::new(reader).build();
assert!(result.is_err());
}
#[test]
fn test_load_invalid_function_section_length() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x04, // Length: 4
0x00, 0x00, 0x00, 0x00, // Flags: 0
0x00, 0x00, 0x00, 0x02, // Section type: Functions
0x00, 0x00, 0x00, 0x09, // Length: 9 (invalid)
0x00, 0x00, 0x00, 0x00, // Function location: 0
0x6d, 0x61, 0x69, 0x6e, // Function name: "main"
0x41, 0x00, // "A" and Null terminator
0x00, 0x00, 0x00, 0x03, // Section type: Strings
0x00, 0x00, 0x00, 0x04, // Length: 4
0x61, 0x62, 0x63, 0x00, // String: "abc"
0x00, 0x00, 0x00, 0x04, // Section type: Instructions
0x00, 0x00, 0x00, 0x0c, // Length: 12
0x01, // Opcode: Jmp
0xF3, // Opcode: ImmByte
0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF4, // Opcode: ImmShort
0x00, 0x01, // Operand: 1
0x15, // Opcode: PushString
0xF0, // Opcode: ImmStringByte
0x00, // Operand: 0
0x1b, // Opcode: PushPi
0x07, // Opcode: Ret
]);
let result = BytecodeLoaderBuilder::new(reader).build();
assert!(result.is_err());
}
#[test]
fn test_operands() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x04, // Length: 4
0x00, 0x00, 0x00, 0x00, // Flags: 0
0x00, 0x00, 0x00, 0x02, // Section type: Functions
0x00, 0x00, 0x00, 0x09, // Length: 9
0x00, 0x00, 0x00, 0x00, // Function location: 0
0x6d, 0x61, 0x69, 0x6e, // Function name: "main"
0x00, // Null terminator
0x00, 0x00, 0x00, 0x03, // Section type: Strings
0x00, 0x00, 0x00, 0x04, // Length: 4
0x61, 0x62, 0x63, 0x00, // String: "abc"
0x00, 0x00, 0x00, 0x04, // Section type: Instructions
0x00, 0x00, 0x00, 0x23, // Length: 35
0x01, // Opcode: Jmp
0xF3, // Opcode: ImmByte
0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF4, // Opcode: ImmShort
0x00, 0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF5, // Opcode: ImmInt
0x00, 0x00, 0x00, 0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF6, // Opcode: ImmFloat
0x33, 0x2e, 0x31, 0x34, 0x00, // Operand: "3.14"
0x15, // Opcode: PushString
0xF0, // Opcode: ImmStringByte
0x00, // Operand: 0
0x15, // Opcode: PushString
0xF1, // Opcode: ImmStringShort
0x00, 0x00, // Operand: 0
0x15, // Opcode: PushString
0xF2, // Opcode: ImmStringInt
0x00, 0x00, 0x00, 0x00, // Operand: 0
0x1b, // Opcode: PushPi
0x07, // Opcode: Ret
]);
let loader = BytecodeLoaderBuilder::new(reader).build().unwrap();
assert_eq!(loader.function_map.len(), 2);
assert_eq!(loader.function_map.get(&Some("main".to_string())), Some(&0));
assert_eq!(loader.strings.len(), 1);
assert_eq!(loader.strings.first(), Some(&"abc".to_string()));
assert_eq!(loader.instructions.len(), 9);
assert_eq!(loader.instructions[0].opcode, crate::opcode::Opcode::Jmp);
assert_eq!(
loader.instructions[0].operand,
Some(crate::operand::Operand::new_number(1))
);
assert_eq!(
loader.instructions[1].opcode,
crate::opcode::Opcode::PushNumber
);
assert_eq!(
loader.instructions[1].operand,
Some(crate::operand::Operand::new_number(1))
);
assert_eq!(
loader.instructions[2].opcode,
crate::opcode::Opcode::PushNumber
);
assert_eq!(
loader.instructions[2].operand,
Some(crate::operand::Operand::new_number(1))
);
assert_eq!(
loader.instructions[3].opcode,
crate::opcode::Opcode::PushNumber
);
assert_eq!(
loader.instructions[3].operand,
Some(crate::operand::Operand::new_float("3.14".to_string()))
);
assert_eq!(
loader.instructions[4].opcode,
crate::opcode::Opcode::PushString
);
assert_eq!(
loader.instructions[4].operand,
Some(crate::operand::Operand::new_string("abc"))
);
assert_eq!(
loader.instructions[5].opcode,
crate::opcode::Opcode::PushString
);
assert_eq!(
loader.instructions[5].operand,
Some(crate::operand::Operand::new_string("abc"))
);
assert_eq!(
loader.instructions[6].opcode,
crate::opcode::Opcode::PushString
);
assert_eq!(
loader.instructions[6].operand,
Some(crate::operand::Operand::new_string("abc"))
);
assert_eq!(loader.instructions[7].opcode, crate::opcode::Opcode::PushPi);
assert_eq!(loader.instructions[7].operand, None);
assert_eq!(loader.instructions[8].opcode, crate::opcode::Opcode::Ret);
assert_eq!(loader.instructions[8].operand, None);
}
#[test]
fn test_start_block_addresses() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x04, // Length: 4
0x00, 0x00, 0x00, 0x00, // Flags: 0
0x00, 0x00, 0x00, 0x02, // Section type: Functions
0x00, 0x00, 0x00, 0x09, // Length: 9
0x00, 0x00, 0x00, 0x03, // Function location: 3
0x6d, 0x61, 0x69, 0x6e, // Function name: "main"
0x00, // Null terminator
0x00, 0x00, 0x00, 0x03, // Section type: Strings
0x00, 0x00, 0x00, 0x04, // Length: 4
0x41, 0x42, 0x43, 0x00, // String: "ABC"
0x00, 0x00, 0x00, 0x04, // Section type: Instructions
0x00, 0x00, 0x00, 0x26, // Length: 38
0x01, // Opcode: Jmp
0xF3, // Opcode: ImmByte
0x05, // Operand: 5
0x14, // Opcode: PushNumber
0xF4, // Opcode: ImmShort
0x00, 0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF5, // Opcode: ImmInt
0x00, 0x00, 0x00, 0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF6, // Opcode: ImmFloat
0x33, 0x2e, 0x31, 0x34, 0x00, // Operand: "3.14"
0x15, // Opcode: PushString
0xF0, // Opcode: ImmStringByte
0x00, // Operand: 0
0x15, // Opcode: PushString
0xF1, // Opcode: ImmStringShort
0x00, 0x00, // Operand: 0
0x02, // Opcode: Jeq
0xF3, // Opcode: ImmByte
0x02, // Operand: 2
0x15, // Opcode: PushString
0xF2, // Opcode: ImmStringInt
0x00, 0x00, 0x00, 0x00, // Operand: 0
0x1b, // Opcode: PushPi
0x07, // Opcode: Ret
]);
let loader = BytecodeLoaderBuilder::new(reader).build().unwrap();
assert_eq!(loader.block_breaks.len(), 7);
assert!(loader.block_breaks.contains(&0));
assert!(loader.block_breaks.contains(&1));
assert!(loader.block_breaks.contains(&2));
assert!(loader.block_breaks.contains(&3));
assert!(loader.block_breaks.contains(&5));
assert!(loader.block_breaks.contains(&7));
assert!(loader.block_breaks.contains(&10));
}
#[test]
fn test_invalid_blocks() {
let reader = std::io::Cursor::new(vec![
0x00, 0x00, 0x00, 0x01, // Section type: Gs1Flags
0x00, 0x00, 0x00, 0x04, // Length: 4
0x00, 0x00, 0x00, 0x00, // Flags: 0
0x00, 0x00, 0x00, 0x02, // Section type: Functions
0x00, 0x00, 0x00, 0x09, // Length: 9
0x00, 0x00, 0x00, 0x00, // Function location: 0
0x6d, 0x61, 0x69, 0x6e, // Function name: "main"
0x00, // Null terminator
0x00, 0x00, 0x00, 0x03, // Section type: Strings
0x00, 0x00, 0x00, 0x04, // Length: 4
0x41, 0x42, 0x43, 0x00, // String: "ABC"
0x00, 0x00, 0x00, 0x04, // Section type: Instructions
0x00, 0x00, 0x00, 0x26, // Length: 38
0x01, // Opcode: Jmp
0xF3, // Opcode: ImmByte
0x05, // Operand: 5
0x14, // Opcode: PushNumber
0xF4, // Opcode: ImmShort
0x00, 0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF5, // Opcode: ImmInt
0x00, 0x00, 0x00, 0x01, // Operand: 1
0x14, // Opcode: PushNumber
0xF6, // Opcode: ImmFloat
0x33, 0x2e, 0x31, 0x34, 0x00, // Operand: "3.14"
0x15, // Opcode: PushString
0xF0, // Opcode: ImmStringByte
0x00, // Operand: 0
0x15, // Opcode: PushString
0xF1, // Opcode: ImmStringShort
0x00, 0x00, // Operand: 0
0x02, // Opcode: Jeq
0xF3, // Opcode: ImmByte
0xFF, // Operand: FF (invalid)
0x15, // Opcode: PushString
0xF2, // Opcode: ImmStringInt
0x00, 0x00, 0x00, 0x00, // Operand: 0
0x1b, // Opcode: PushPi
0x07, // Opcode: Ret
]);
// print instructions
let loader = BytecodeLoaderBuilder::new(reader).build();
assert!(loader.is_err());
}
}